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Introduction

Small-scale topological structure of dynamic airline network

Graph-theoretic research on transportation networks typically
focuses on macro or micro measures (diameter, centrality)

Little known about subgraph-level behaviour (scaling, motifs),
sometimes called “mesoscopic”’ measures
Count small subgraphs — exact analytic enumeration

Investigate scaling — power law between subgraph counts
and edges, evidence for model evolution ( “phase transition™)

Identify motifs — statistically significant wrt. random graphs
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Framework for study of simple undirected graphs

» Real-world network as graph

G=(V,E), n=|V|, m=|E|

» Adjacency matrix

g=1(8)j, (g)i=0, (g)ij=1(g)i (g)j<c{0,1}

» Edge, neighbourhood, degree, density
()€ B, Te(i)={j:(ij) € E}

ki=|Fe()l, d(G)=2m/n(n—1)
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Small connected non-isomorphic subgraphs (3, 4 nodes)

L. I L U

3-star M3 Triangle M-f- ) 4- starM 4-path M

N IOIN K

Tadpole M(4) 4-circle Mgo Diamond M31 4-complete M(4

Subgraph M is G’ = (V',E’) C G with V' C V and E’ C E, such that
(i,j) e Bl = i,j€ V" (induced subgraph M.? has every possible edge)

4/22



Small connected non-isomorphic subgraphs (5 nodes)
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eg MY, b=5 a=y 1 yr 202000 (g);, 110, = 0001110111,
(spinning top)
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Counting subgraphs by decomposition

Let g be the adjacency matrix and let k; be the degree of node i

1
Mg = 5 2 (&) (ki —2)

ki>2
tadpole
5 ki —1 4
WHENEDY (’2 )(kj—l)—sz&)\
(i,))€EE
both directions
5-arrow

Generally, analytic formulae for subgraphs can be expressed in
terms of simpler subgraphs (Noga Alon et al., 1997; Estrada, 2011)
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Counting induced subgraphs by linear combination

() () () () (=t ) \ )
(=) (=~ ) ( — ) ( )

(a) 4-star Mﬁ)~ (b) Tadpole M :? (¢) Diamond MS)‘ (d) 4-complete MS)-

M| = (M| — M| —2|M5Y| — 4 1m)]
MP) = (M| — 4 M) — 121m)]
VY| = [MSD| — 6 M|

(4 4 4 4
— (M| = (M| - MP| +2 MY — 4 1MmG)]
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Exact enumeration much harder for larger subgraphs

Let g be the adjacency matrix and k; the degree of node /, and
S(i,j) =Tg(i)NT(j) the common neighbourhood of nodes i, j

IMEN=Y (jyee (€)i—1) T es(ij)lki—2)-12|M3)|
k,‘>2,kj>2 k. >1

spinning top

|M119| |M119‘ 3‘Ml27| 2‘M2 | 2|M2 |+8|M§55|+8| 07| 24|,\/I511|—*—60“\/11023

Much work on efficient algorithms to make subgraph counting
feasible for larger subgraphs and networks (Ribeiro et al., 2021)
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Route-map data for Southwest Airlines (1)
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Route-map data for Southwest Airlines (2)?
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Network dynamics — local and global
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» Number of airports has increased much faster than routes
» Heterogeneity in degree centrality over time, different airports

» Diameter and average path length very similar to Erdds-Rényi
G(n, p) but much higher clustering, suggesting small world,
and subgraph counts generally much higher than in G(n, p)

11/22



Power laws in economics and biology (Gabaix, 2016)?
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B ~ —3 (cubic law)

B ~ 1/3 (Robert’s law) B =~ 3/4 (Kleiber's law)

2Clockwise from top-left: city rank and population, stock return distribution

and return, metabolic rate and body mass, CEO compensation and firm size 12/22



How do subgraphs scale with network size??

» Evidence that \I\/I
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» Erdés-Rényi G(n, p), general scaling result (Bollobas, 1985;
Itzkovitz & Uri Alon, 2005) = [ = b/2 as n large

3 “Networks are full of power laws ..."
“It would be nice to know.”

randomness?

but do they arise from optimality or
(Gabaix, 2016, pp.200-201)
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Evidence for power law \Mgb)| = Am”, full-sample
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» Close match between estimated slope 3 (blue), and b — 1
(black) for all subgraphs b = 3,4,5; R-squared very high (red)
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Scaling not robust to evolution in toy model (1)

S ()
I\ o _F J\\ 7//}

(a) £ =2 nodes. (b) £ =3 nodes.
e
)
"

(d) £ =n* =5 nodes. (e) £ = 6 nodes.

» (Regime 1, n<n ) Grows as n-star
e.g. ]M(3)| ~271m?, as n* large

» (Regime 2, n > n*) Tends to n-complete

D

(¢) £ =4 nodes.

(f) £ =17 nodes.

e.g. |M§3)| ~ 212m3/2  as n large relative to n*
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Scaling not robust to evolution in toy model (2)
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» Setting n = 30 and n* = 20, least squares on full-sample gives
B = 1.56 and R? = 0.983 for 3-star subgraph counts
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Evidence for power law \M | = Am”, two regimes
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» In Regime 1, evidence that 5 ~ b —1

R-SQUARED

Regime 1 Regime 2

» In Regime 2, evidence that 5~ b/2

» Which theoretical or real graphs have similar scaling?
What could cause such a “phase transition”?
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Which

induced subgraphs are motifs?

Do any subgraphs arise more (less) often than in G random?
(Milo et al., 2002; many papers 2002-2004; Chen et al., 2013)

Null ensemble: degree-preserving rewiring of edges to
randomize observed G, control for observed lower-degree
induced subgraphs by simulated annealing (Milo et al., 2002)

Motifs unique local topologies, basic structural elements that
may perform specialized functions individually or in interaction
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The z-scores for 3-node and 4-node induced subgraphs
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> The 3-star A7I§3) less significant over time, triangle Mgs)

opposite interpretation, but density and clustering have fallen!

» The 4-star I\7Iﬁ) is a strong motif for much of the sample, the
4-path I\/Ig) and tadpole Mg) are strong anti-motifs
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The z-scores for 5-node induced subgraphs
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» Some heterogeneity across subgraphs, significance of motifs
stable over time, curious given observed dynamics and scaling
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Conclusions

» Frame real-world transportation network as a mathematical
graph, investigate local topology, some features of random
graphs but striking differences too (scaling, motifs)

» Quantitative evidence for power law between subgraph counts
and edges, possible “phase transition” in underlying model

> Efficient detection of motifs on 3-5 nodes, some surprising
quantitative results (density falls but “clustered” motifs more
significant, time-varying scaling but motifs “stable” over time)
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Extensions and speculation

» Develop a better qualitative and quantitative understanding of
subgraph-based scaling in economic and transportation
networks (better data, larger networks, larger subgraphs,
bias-reducing econometrics, theoretical models, universality)

» Expand toolkit of subgraph-based “mesoscopic” measures,
subgraphs as “fingerprints” of real-world networks? (network
typology, components of econometric or statistical models)

» Do small subgraphs provide insight into the “reconstruction
conjecture” (Kelly, 1957; Ulam, 1960) or analogous results?
(are graphs uniquely determined by small/large subgraphs?)
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