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Introduction

▶ Small-scale topological structure of dynamic airline network

▶ Graph-theoretic research on transportation networks typically
focuses on macro or micro measures (diameter, centrality)

▶ Little known about subgraph-level behaviour (scaling, motifs),
sometimes called “mesoscopic” measures

(1) Count small subgraphs — exact analytic enumeration

(2) Investigate scaling — power law between subgraph counts
and edges, evidence for model evolution (“phase transition”)

(3) Identify motifs — statistically significant wrt. random graphs
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Framework for study of simple undirected graphs

▶ Real-world network as graph

G = (V ,E ), n = |V |, m = |E |

▶ Adjacency matrix

g = (g)ij , (g)ii = 0, (g)ij = (g)ji , (g)ij ∈ {0, 1}

▶ Edge, neighbourhood, degree, density

(i , j) ∈ E , ΓG (i) = { j : (i , j) ∈ E}

ki = |ΓG (i)|, d(G ) = 2m/n(n − 1)
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Small connected non-isomorphic subgraphs (3, 4 nodes)

Subgraph M
(b)
a is G ′ = (V ′,E ′) ⊆ G with V ′ ⊆ V and E ′ ⊆ E , such that

(i , j) ∈ E ′ =⇒ i , j ∈ V ′ (induced subgraph M̃
(b)
a has every possible edge)
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Small connected non-isomorphic subgraphs (5 nodes)

e.g. M
(b)
a , b = 5, a =

∑b−1
i=1

∑b
j=i+1 2

(b−i
2 )+(b−j) (g)ij , 11910 = 00011101112

(spinning top)
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Counting subgraphs by decomposition

Let g be the adjacency matrix and let ki be the degree of node i

tadpole

|M(4)
15 | = 1

2

∑
ki>2

(g3)ii (ki − 2)

5-arrow

|M(5)
77 | =

∑
(i , j)∈E

both directions

(
ki − 1

2

)
(kj−1)−2|M(4)

15 |

Generally, analytic formulae for subgraphs can be expressed in
terms of simpler subgraphs (Noga Alon et al., 1997; Estrada, 2011)
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Counting induced subgraphs by linear combination

|M̃(4)
11 | = |M(4)

11 | − |M̃(4)
15 | − 2 |M̃(4)

31 | − 4 |M(4)
63 |

|M̃(4)
15 | = |M(4)

15 | − 4 |M̃(4)
31 | − 12 |M(4)

63 |

|M̃(4)
31 | = |M(4)

31 | − 6 |M(4)
63 |

=⇒ |M̃(4)
11 | = |M(4)

11 | − |M(4)
15 |+ 2 |M(4)

31 | − 4 |M(4)
63 |
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Exact enumeration much harder for larger subgraphs

Let g be the adjacency matrix and ki the degree of node i , and
S(i , j) = ΓG (i) ∩ ΓG (j) the common neighbourhood of nodes i , j

spinning top

|M(5)
119|=

∑
(i ,j)∈E

ki>2, kj>2

((g2)ij−1)
∑

r∈S(i ,j)
kr>1

(kr−2)−12 |M(4)
63 |

|M̃(5)
119|=|M(5)

119|−3 |M(5)
127|−2 |M(5)

239|−2 |M(5)
254|+8 |M(5)

255|+8 |M(5)
507|−24 |M(5)

511|+60 |M(5)
1023|

Much work on efficient algorithms to make subgraph counting
feasible for larger subgraphs and networks (Ribeiro et al., 2021)
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Route-map data for Southwest Airlines (1)

DB1B, 1999Q1 – 2013Q4, unidirectional route-level, direct tickets
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Route-map data for Southwest Airlines (2)1

Triangle M
(3)
7 4-complete M

(4)
63

1Dayton–Denver–Orlando and Albuquerque–Dallas–Houston–Kansas City
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Network dynamics — local and global

Density Degree centrality

▶ Number of airports has increased much faster than routes

▶ Heterogeneity in degree centrality over time, different airports

▶ Diameter and average path length very similar to Erdős-Rényi
G (n, p) but much higher clustering, suggesting small world,
and subgraph counts generally much higher than in G (n, p)
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Power laws in economics and biology (Gabaix, 2016)2

β ≈ −1 (Zipf’s law) β ≈ −3 (cubic law)

β ≈ 1/3 (Robert’s law) β ≈ 3/4 (Kleiber’s law)

2Clockwise from top-left: city rank and population, stock return distribution
and return, metabolic rate and body mass, CEO compensation and firm size

12 / 22



How do subgraphs scale with network size?3

tadpole

▶ Evidence that |M(b)
a | = Am β with β ≈ b − 1

▶ Erdős-Rényi G (n, p), general scaling result (Bollobás, 1985;
Itzkovitz & Uri Alon, 2005) =⇒ β = b/2 as n large

3“Networks are full of power laws . . . ” but do they arise from optimality or
randomness? “It would be nice to know.” (Gabaix, 2016, pp.200–201)
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Evidence for power law |M (b)
a | = Am β, full-sample

▶ Close match between estimated slope β (blue), and b − 1
(black) for all subgraphs b = 3, 4, 5; R-squared very high (red)
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Scaling not robust to evolution in toy model (1)

▶ (Regime 1, n < n⋆) Grows as n-star

e.g. |M(3)
3 | ∼ 2−1m2, as n⋆ large

▶ (Regime 2, n ≥ n⋆) Tends to n-complete

e.g. |M(3)
3 | ∼ 21/2m3/2, as n large relative to n⋆
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Scaling not robust to evolution in toy model (2)

3-star

▶ Setting n = 30 and n⋆ = 20, least squares on full-sample gives
β = 1.56 and R2 = 0.983 for 3-star subgraph counts
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Evidence for power law |M (b)
a | = Am β, two regimes

Regime 1 Regime 2

▶ In Regime 1, evidence that β ≈ b − 1

▶ In Regime 2, evidence that β ≈ b/2

▶ Which theoretical or real graphs have similar scaling?
What could cause such a “phase transition”?
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Which induced subgraphs are motifs?

▶ Do any subgraphs arise more (less) often than in G random?
(Milo et al., 2002; many papers 2002–2004; Chen et al., 2013)

▶ Null ensemble: degree-preserving rewiring of edges to
randomize observed G , control for observed lower-degree
induced subgraphs by simulated annealing (Milo et al., 2002)

▶ Motifs unique local topologies, basic structural elements that
may perform specialized functions individually or in interaction
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The z-scores for 3-node and 4-node induced subgraphs

3-node 4-node

▶ The 3-star M̃
(3)
3 less significant over time, triangle M

(3)
7

opposite interpretation, but density and clustering have fallen!

▶ The 4-star M̃
(4)
11 is a strong motif for much of the sample, the

4-path M̃
(4)
13 and tadpole M̃

(4)
15 are strong anti-motifs
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The z-scores for 5-node induced subgraphs

5-node

▶ Some heterogeneity across subgraphs, significance of motifs
stable over time, curious given observed dynamics and scaling
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Conclusions

▶ Frame real-world transportation network as a mathematical
graph, investigate local topology, some features of random
graphs but striking differences too (scaling, motifs)

▶ Quantitative evidence for power law between subgraph counts
and edges, possible “phase transition” in underlying model

▶ Efficient detection of motifs on 3–5 nodes, some surprising
quantitative results (density falls but “clustered” motifs more
significant, time-varying scaling but motifs “stable” over time)
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Extensions and speculation

▶ Develop a better qualitative and quantitative understanding of
subgraph-based scaling in economic and transportation
networks (better data, larger networks, larger subgraphs,
bias-reducing econometrics, theoretical models, universality)

▶ Expand toolkit of subgraph-based “mesoscopic” measures,
subgraphs as “fingerprints” of real-world networks? (network
typology, components of econometric or statistical models)

▶ Do small subgraphs provide insight into the “reconstruction
conjecture” (Kelly, 1957; Ulam, 1960) or analogous results?
(are graphs uniquely determined by small/large subgraphs?)
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